logo

تحقق مما إذا كان من الممكن تشكيل التقدم الحسابي من المصفوفة المحددة

جربه على ممارسة GfG ' title=

نظرا لمجموعة من ن الأعداد الصحيحة. وتتمثل المهمة في التحقق مما إذا كان من الممكن تشكيل تقدم حسابي باستخدام جميع العناصر المحددة. إذا أمكن، اطبع "نعم" وإلا اطبع "لا".

أمثلة:  

مدخل : آر[] = {0 12 4 8}
الإخراج : نعم
أعد ترتيب المصفوفة المحددة كـ {0 4 8 12} والتي تشكل تقدمًا حسابيًا.

مدخل : آر[] = {12 40 11 20}
الإخراج : لا



استخدام الفرز - وقت O(n Log n).

والفكرة هي فرز مجموعة معينة. بعد الفرز، تحقق مما إذا كانت الاختلافات بين العناصر المتتالية متماثلة أم لا. إذا كانت جميع الاختلافات هي نفس التقدم الحسابي فمن الممكن. يرجى الرجوع - برنامج للتحقق من التقدم الحسابي لتنفيذ هذا النهج.

استخدام فرز العد - O(n) Time وO(n) Space

يمكننا تقليل المساحة المطلوبة في الطريقة الثالثة إذا كان من الممكن تعديل المصفوفة المحددة. 

  1. العثور على أصغر العناصر وثاني أصغر العناصر.
  2. أوجد d = Second_smallest - الأصغر
  3. اطرح أصغر عنصر من جميع العناصر.
  4. الآن، إذا كانت المصفوفة المعطاة تمثل AP، فيجب أن تكون جميع العناصر من النموذج i*d حيث يتراوح i من 0 إلى n-1.
  5. قم بتقسيم جميع العناصر المختزلة واحدًا تلو الآخر باستخدام d. إذا كان أي عنصر غير قابل للقسمة على d، فسيتم إرجاع خطأ.
  6. الآن، إذا كانت المصفوفة تمثل AP، فيجب أن تكون تبديلًا للأرقام من 0 إلى n-1. يمكننا التحقق من ذلك بسهولة باستخدام الفرز العدي.

وفيما يلي تنفيذ هذه الطريقة:

C++
// C++ program to check if a given array // can form arithmetic progression #include    using namespace std; // Checking if array is permutation  // of 0 to n-1 using counting sort bool countingsort(int arr[] int n) {  int count[n] = { 0 };    // Counting the frequency  for (int i = 0; i < n; i++) {  count[arr[i]]++;  }    // Check if each frequency is 1 only  for (int i = 0; i <= n-1; i++) {  if (count[i] != 1)  return false;  }    return true; } // Returns true if a permutation of arr[0..n-1] // can form arithmetic progression bool checkIsAP(int arr[] int n) {  int smallest = INT_MAX second_smallest = INT_MAX;  for (int i = 0; i < n; i++) {    // Find the smallest and   // update second smallest  if (arr[i] < smallest) {  second_smallest = smallest;  smallest = arr[i];  }    // Find second smallest  else if (arr[i] != smallest  && arr[i] < second_smallest)  second_smallest = arr[i];  }  // Find the difference between smallest and second  // smallest  int diff = second_smallest - smallest;  for (int i = 0; i < n; i++) {  arr[i]=arr[i]-smallest;  }    for(int i=0;i<n;i++)  {  if(arr[i]%diff!=0)  {  return false;  }  else  {  arr[i]=arr[i]/diff;  }  }    // If array represents AP it must be a   // permutation of numbers from 0 to n-1.  // Check this using counting sort.  if(countingsort(arrn))  return true;  else  return false; } // Driven Program int main() {  int arr[] = { 20 15 5 0 10 };  int n = sizeof(arr) / sizeof(arr[0]);  (checkIsAP(arr n)) ? (cout << 'Yes' << endl)  : (cout << 'No' << endl);  return 0;  // This code is contributed by Pushpesh Raj } 
Java
// Java program to check if a given array // can form arithmetic progression import java.io.*; class GFG {  // Checking if array is permutation  // of 0 to n-1 using counting sort  static boolean countingsort(int arr[] int n)  {  int[] count = new int[n];  for(int i = 0; i < n; i++)  count[i] = 0;  // Counting the frequency  for (int i = 0; i < n; i++) {  count[arr[i]]++;  }  // Check if each frequency is 1 only  for (int i = 0; i <= n-1; i++) {  if (count[i] != 1)  return false;  }  return true;  }  // Returns true if a permutation of arr[0..n-1]  // can form arithmetic progression  static boolean checkIsAP(int arr[] int n)  {  int smallest = Integer.MAX_VALUE second_smallest = Integer.MAX_VALUE ;  for (int i = 0; i < n; i++) {  // Find the smallest and  // update second smallest  if (arr[i] < smallest) {  second_smallest = smallest;  smallest = arr[i];  }  // Find second smallest  else if (arr[i] != smallest  && arr[i] < second_smallest)  second_smallest = arr[i];  }  // Find the difference between smallest and second  // smallest  int diff = second_smallest - smallest;  for (int i = 0; i < n; i++) {  arr[i] = arr[i] - smallest;  }  for(int i = 0; i < n; i++)  {  if(arr[i] % diff != 0)  {  return false;  }  else  {  arr[i] = arr[i]/diff;  }  }  // If array represents AP it must be a  // permutation of numbers from 0 to n-1.  // Check this using counting sort.  if(countingsort(arrn))  return true;  else  return false;  }  // Driven Program  public static void main (String[] args)  {  int arr[] = { 20 15 5 0 10 };  int n = arr.length;  if(checkIsAP(arr n))   System.out.println('Yes');  else System.out.println('No');  } } // This code is contributed by Utkarsh 
Python
# Python program to check if a given array # can form arithmetic progression import sys # Checking if array is permutation  # of 0 to n-1 using counting sort def countingsort( arr n): count = [0]*n; # Counting the frequency for i in range(0 n): count[arr[i]] += 1; # Check if each frequency is 1 only for i in range(0 n - 1): if (count[i] != 1): return False; return True; # Returns true if a permutation of arr[0..n-1] # can form arithmetic progression def checkIsAP( arr n): smallest = sys.maxsize; second_smallest = sys.maxsize; for i in range(0n): # Find the smallest and  # update second smallest if (arr[i] < smallest) : second_smallest = smallest; smallest = arr[i]; # Find second smallest elif (arr[i] != smallest and arr[i] < second_smallest): second_smallest = arr[i]; # Find the difference between smallest and second # smallest diff = second_smallest - smallest; for i in range(0n): arr[i]=arr[i]-smallest; for i in range(0n): if(arr[i]%diff!=0): return False; else: arr[i]=(int)(arr[i]/diff); # If array represents AP it must be a  # permutation of numbers from 0 to n-1. # Check this using counting sort. if(countingsort(arrn)): return True; else: return False; # Driven Program arr = [ 20 15 5 0 10 ]; n = len(arr); if(checkIsAP(arr n)): print('Yes'); else: print('NO'); # This code is contributed by ratiagrawal. 
C#
using System;  class GFG  {  // Checking if array is permutation  // of 0 to n-1 using counting sort  static bool CountingSort(int[] arr int n)  {  // Counting the frequency  int[] count = new int[n];  for (int i = 0; i < n; i++)  {  count[arr[i]]++;  }  // Check if each frequency is 1 only  for (int i = 0; i <= n - 1; i++)  {  if (count[i] != 1)  {  return false;  }  }  return true;  }// Returns true if a permutation of arr[0..n-1]  // can form arithmetic progression  static bool CheckIsAP(int[] arr int n)  {// Find the smallest and  // update second smallest  int smallest = int.MaxValue;  int secondSmallest = int.MaxValue;  for (int i = 0; i < n; i++)  {  if (arr[i] < smallest)  {  secondSmallest = smallest;  smallest = arr[i];  }  else if (arr[i] != smallest && arr[i] < secondSmallest)  {  secondSmallest = arr[i];  }  }  int diff = secondSmallest - smallest;  for (int i = 0; i < n; i++)  {  arr[i] = arr[i] - smallest;  }  for (int i = 0; i < n; i++)  {  if (arr[i] % diff != 0)  {  return false;  }  else  {  arr[i] = arr[i] / diff;  }  } // If array represents AP it must be a  // permutation of numbers from 0 to n-1.  // Check this using counting sort.  if (CountingSort(arr n))  {  return true;  }  else  {  return false;  }  } // Driven Program  static void Main(string[] args)  {  int[] arr = new int[] { 20 15 5 0 10 };  int n = arr.Length;  Console.WriteLine(CheckIsAP(arr n) ? 'Yes' : 'No');  }  } 
JavaScript
// Javascript program to check if a given array // can form arithmetic progression // Checking if array is permutation  // of 0 to n-1 using counting sort function countingsort( arr n) {  let count=new Array(n).fill(0);    // Counting the frequency  for (let i = 0; i < n; i++) {  count[arr[i]]++;  }    // Check if each frequency is 1 only  for (let i = 0; i <= n-1; i++) {  if (count[i] != 1)  return false;  }    return true; } // Returns true if a permutation of arr[0..n-1] // can form arithmetic progression function checkIsAP( arr n) {  let smallest = Number.MAX_SAFE_INTEGER second_smallest = Number.MAX_SAFE_INTEGER;  for (let i = 0; i < n; i++) {    // Find the smallest and   // update second smallest  if (arr[i] < smallest) {  second_smallest = smallest;  smallest = arr[i];  }    // Find second smallest  else if (arr[i] != smallest  && arr[i] < second_smallest)  second_smallest = arr[i];  }  // Find the difference between smallest and second  // smallest  let diff = second_smallest - smallest;  for (let i = 0; i < n; i++) {  arr[i]=arr[i]-smallest;  }    for(let i=0;i<n;i++)  {  if(arr[i]%diff!=0)  {  return false;  }  else  {  arr[i]=arr[i]/diff;  }  }    // If array represents AP it must be a   // permutation of numbers from 0 to n-1.  // Check this using counting sort.  if(countingsort(arrn))  return true;  else  return false; } // Driven Program let arr = [20 15 5 0 10 ]; let n = arr.length; (checkIsAP(arr n)) ? (console.log('Yesn'))  : (console.log('Non'));    // // This code was contributed by poojaagrawal2. 

الإخراج
Yes

تعقيد الوقت - O(n) 
المساحة المساعدة - O(n)

التجزئة مع مرور واحد - O(n) الوقت وO(n) الفضاء

الفكرة الأساسية هي إيجاد الفرق المشترك بين AP من خلال معرفة الحد الأقصى والحد الأدنى لعنصر المصفوفة. بعد ذلك ابدأ من القيمة القصوى واستمر في تقليل القيمة بالفرق المشترك مع التأكد من وجود هذه القيمة الجديدة في الهاشماب أم لا. إذا لم تكن القيمة موجودة في مجموعة التجزئة في أي وقت، فقم بكسر الحلقة. الوضع المثالي بعد كسر الحلقة هو أن جميع العناصر n قد تمت تغطيتها، وإذا كانت الإجابة بنعم، فارجع صحيحًا وإلا قم بإرجاع خطأ. 

منشئ السلسلة
C++
// C++ program for above approach #include    using namespace std; bool checkIsAP(int arr[] int n) {  unordered_set<int> st;  int maxi = INT_MIN;  int mini = INT_MAX;  for (int i=0;i<n;i++) {  maxi = max(arr[i] maxi);  mini = min(arr[i] mini);  st.insert(arr[i]);  }    // FINDING THE COMMON DIFFERENCE  int diff = (maxi - mini) / (n - 1);  int count = 0;  // CHECK TERMS OF AP PRESENT IN THE HASHSET  while (st.find(maxi)!=st.end()) {  count++;  maxi = maxi - diff;  }    if (count == n)  return true;  return false; } // Driver Code int main() {  int arr[] = { 0 12 4 8 };  int n = 4;  cout << boolalpha << checkIsAP(arr n);  return 0; } // This code is contributed by Rohit Pradhan 
Java
/*package whatever //do not write package name here */ import java.io.*; import java.util.*; class GFG {  public static void main(String[] args)  {  int[] arr = { 0 12 4 8 };  int n = arr.length;  System.out.println(checkIsAP(arr n));  }  static boolean checkIsAP(int arr[] int n)  {  HashSet<Integer> set = new HashSet<Integer>();  int max = Integer.MIN_VALUE;  int min = Integer.MAX_VALUE;  for (int i : arr) {  max = Math.max(i max);  min = Math.min(i min);  set.add(i);  }    // FINDING THE COMMON DIFFERENCE  int diff = (max - min) / (n - 1);  int count = 0;  // CHECK IF TERMS OF AP PRESENT IN THE HASHSET   while (set.contains(max)) {  count++;  max = max - diff;  }  if (count == arr.length)  return true;  return false;  } } 
Python
import sys def checkIsAP(arr n): Set = set() Max = -sys.maxsize - 1 Min = sys.maxsize for i in arr: Max = max(i Max) Min = min(i Min) Set.add(i) # FINDING THE COMMON DIFFERENCE diff = (Max - Min) // (n - 1) count = 0 # CHECK IF TERMS OF AP PRESENT IN THE HASHSET  while (Max in Set): count += 1 Max = Max - diff if (count == len(arr)): return True return False # driver code arr = [ 0 12 4 8 ] n = len(arr) print(checkIsAP(arr n)) # This code is contributed by shinjanpatra 
C#
using System; using System.Collections.Generic; public class GFG  {  // C# program for above approach  static bool checkIsAP(int[] arr int n)  {  HashSet<int> st = new HashSet<int>();  int maxi = int.MinValue;  int mini = int.MaxValue;  for (int i = 0; i < n; i++) {  maxi = Math.Max(arr[i] maxi);  mini = Math.Min(arr[i] mini);  st.Add(arr[i]);  }    // FINDING THE COMMON DIFFERENCE  int diff = (maxi - mini) / (n - 1);  int count = 0;  // CHECK IF TERMS OF AP PRESENT IN THE HASHSET   while (st.Contains(maxi)) {  count++;  maxi = maxi - diff;  }  if (count == n) {  return true;  }  return false;  }  // Driver Code  internal static void Main()  {  int[] arr = { 0 12 4 8 };  int n = 4;  Console.Write(checkIsAP(arr n));  }  // This code is contributed by Aarti_Rathi } 
JavaScript
function checkIsAP(arr n){  set = new Set()  let Max = Number.MIN_VALUE  let Min = Number.MAX_VALUE  for(let i of arr){  Max = Math.max(i Max)  Min = Math.min(i Min)  set.add(i)  }    // FINDING THE COMMON DIFFERENCE  let diff = Math.floor((Max - Min) / (n - 1))  let count = 0  // CHECK IF TERMS OF AP PRESENT IN THE HASHSET   while (set.has(Max)){  count += 1  Max = Max - diff  }  if (count == arr.length)  return true  return false } // driver code let arr = [ 0 12 4 8 ] let n = arr.length console.log(checkIsAP(arr n)) 

الإخراج
true
إنشاء اختبار