logo

أولية للرقم

بالنظر إلى رقم n، فإن المهمة هي حساب عدده الأولي. البدائية (يشار إليها باسم Pن#) هو منتج الأعداد الأولية n الأولى. بدائية الرقم يشبه مضروب الرقم. في الأعداد الأولية، لا يتم ضرب جميع الأعداد الطبيعية، بل يتم ضرب الأعداد الأولية لحساب الأعداد الأولية للرقم. ويشار إليه بـ P#.
أمثلة:  
 

  Input:   n = 3   Output:   30 Primorial = 2 * 3 * 5 = 30 As a side note factorial is 2 * 3 * 4 * 5   Input:   n = 5   Output:   2310 Primorial = 2 * 3 * 5 * 7 * 11 


 

أولية للرقم جربه!


نهج ساذج هو التحقق من جميع الأرقام من 1 إلى n واحدًا تلو الآخر وهو أولي أم لا إذا كانت الإجابة بنعم ثم قم بتخزين الضرب في النتيجة وبالمثل قم بتخزين نتيجة ضرب الأعداد الأولية حتى n.
ان فعال الطريقة هي العثور على كل ما يصل إلى n باستخدام غربال سوندارام ثم قم فقط بحساب العناصر الأولية عن طريق ضربها جميعًا.
 



C++
// C++ program to find Primorial of given numbers #include   using namespace std; const int MAX = 1000000; // vector to store all prime less than and equal to 10^6 vector <int> primes; // Function for sieve of sundaram. This function stores all // prime numbers less than MAX in primes void sieveSundaram() {  // In general Sieve of Sundaram produces primes smaller  // than (2*x + 2) for a number given number x. Since  // we want primes smaller than MAX we reduce MAX to half  // This array is used to separate numbers of the form  // i+j+2ij from others where 1 <= i <= j  bool marked[MAX/2 + 1] = {0};  // Main logic of Sundaram. Mark all numbers which  // do not generate prime number by doing 2*i+1  for (int i = 1; i <= (sqrt(MAX)-1)/2 ; i++)  for (int j = (i*(i+1))<<1 ; j <= MAX/2 ; j += 2*i +1)  marked[j] = true;  // Since 2 is a prime number  primes.push_back(2);  // Print other primes. Remaining primes are of the  // form 2*i + 1 such that marked[i] is false.  for (int i=1; i<=MAX/2; i++)  if (marked[i] == false)  primes.push_back(2*i + 1); } // Function to calculate primorial of n int calculatePrimorial(int n) {  // Multiply first n primes   int result = 1;   for (int i=0; i<n; i++)  result = result * primes[i];  return result; } // Driver code int main() {  int n = 5;  sieveSundaram();  for (int i = 1 ; i<= n; i++)  cout << 'Primorial(P#) of ' << i << ' is '  << calculatePrimorial(i) <<endl;  return 0; } 
Java
// Java program to find Primorial of given numbers  import java.util.*; class GFG{ public static int MAX = 1000000; // vector to store all prime less than and equal to 10^6  static ArrayList<Integer> primes = new ArrayList<Integer>(); // Function for sieve of sundaram. This function stores all  // prime numbers less than MAX in primes  static void sieveSundaram() {  // In general Sieve of Sundaram produces primes smaller   // than (2*x + 2) for a number given number x. Since   // we want primes smaller than MAX we reduce MAX to half   // This array is used to separate numbers of the form   // i+j+2ij from others where 1 <= i <= j   boolean[] marked = new boolean[MAX];  // Main logic of Sundaram. Mark all numbers which   // do not generate prime number by doing 2*i+1   for (int i = 1; i <= (Math.sqrt(MAX) - 1) / 2 ; i++)  {  for (int j = (i * (i + 1)) << 1 ; j <= MAX / 2 ; j += 2 * i + 1)  {  marked[j] = true;  }  }  // Since 2 is a prime number   primes.add(2);  // Print other primes. Remaining primes are of the   // form 2*i + 1 such that marked[i] is false.   for (int i = 1; i <= MAX / 2; i++)  {  if (marked[i] == false)  {  primes.add(2 * i + 1);  }  } } // Function to calculate primorial of n  static int calculatePrimorial(int n) {  // Multiply first n primes   int result = 1;  for (int i = 0; i < n; i++)  {  result = result * primes.get(i);  }  return result; } // Driver code  public static void main(String[] args) {  int n = 5;  sieveSundaram();  for (int i = 1 ; i <= n; i++)  {  System.out.println('Primorial(P#) of '+i+' is '+calculatePrimorial(i));  } } } // This Code is contributed by mits 
Python3
# Python3 program to find Primorial of given numbers  import math MAX = 1000000; # vector to store all prime less than and equal to 10^6  primes=[]; # Function for sieve of sundaram. This function stores all  # prime numbers less than MAX in primes  def sieveSundaram(): # In general Sieve of Sundaram produces primes smaller  # than (2*x + 2) for a number given number x. Since  # we want primes smaller than MAX we reduce MAX to half  # This array is used to separate numbers of the form  # i+j+2ij from others where 1 <= i <= j  marked=[False]*(int(MAX/2)+1); # Main logic of Sundaram. Mark all numbers which  # do not generate prime number by doing 2*i+1  for i in range(1int((math.sqrt(MAX)-1)/2)+1): for j in range(((i*(i+1))<<1)(int(MAX/2)+1)(2*i+1)): marked[j] = True; # Since 2 is a prime number  primes.append(2); # Print other primes. Remaining primes are of the  # form 2*i + 1 such that marked[i] is false.  for i in range(1int(MAX/2)): if (marked[i] == False): primes.append(2*i + 1); # Function to calculate primorial of n  def calculatePrimorial(n): # Multiply first n primes  result = 1; for i in range(n): result = result * primes[i]; return result; # Driver code  n = 5; sieveSundaram(); for i in range(1n+1): print('Primorial(P#) of'i'is'calculatePrimorial(i)); # This code is contributed by mits 
C#
// C# program to find Primorial of given numbers  using System;  using System.Collections; class GFG{ public static int MAX = 1000000; // vector to store all prime less than and equal to 10^6  static ArrayList primes = new ArrayList(); // Function for sieve of sundaram. This function stores all  // prime numbers less than MAX in primes  static void sieveSundaram() {  // In general Sieve of Sundaram produces primes smaller   // than (2*x + 2) for a number given number x. Since   // we want primes smaller than MAX we reduce MAX to half   // This array is used to separate numbers of the form   // i+j+2ij from others where 1 <= i <= j   bool[] marked = new bool[MAX];  // Main logic of Sundaram. Mark all numbers which   // do not generate prime number by doing 2*i+1   for (int i = 1; i <= (Math.Sqrt(MAX) - 1) / 2 ; i++)  {  for (int j = (i * (i + 1)) << 1 ; j <= MAX / 2 ; j += 2 * i + 1)  {  marked[j] = true;  }  }  // Since 2 is a prime number   primes.Add(2);  // Print other primes. Remaining primes are of the   // form 2*i + 1 such that marked[i] is false.   for (int i = 1; i <= MAX / 2; i++)  {  if (marked[i] == false)  {  primes.Add(2 * i + 1);  }  } } // Function to calculate primorial of n  static int calculatePrimorial(int n) {  // Multiply first n primes   int result = 1;  for (int i = 0; i < n; i++)  {  result = result * (int)primes[i];  }  return result; } // Driver code  public static void Main() {  int n = 5;  sieveSundaram();  for (int i = 1 ; i <= n; i++)  {  System.Console.WriteLine('Primorial(P#) of '+i+' is '+calculatePrimorial(i));  } } } // This Code is contributed by mits 
PHP
 // PHP program to find Primorial  // of given numbers $MAX = 100000; // vector to store all prime less // than and equal to 10^6 $primes = array(); // Function for sieve of sundaram.  // This function stores all prime  // numbers less than MAX in primes function sieveSundaram() { global $MAX $primes; // In general Sieve of Sundaram  // produces primes smaller than  // (2*x + 2) for a number given  // number x. Since we want primes  // smaller than MAX we reduce MAX  // to half. This array is used to  // separate numbers of the form // i+j+2ij from others where 1 <= i <= j $marked = array_fill(0 $MAX / 2 + 1 0); // Main logic of Sundaram. Mark all numbers which // do not generate prime number by doing 2*i+1 for ($i = 1; $i <= (sqrt($MAX) - 1) / 2 ; $i++) for ($j = ($i * ($i + 1)) << 1 ; $j <= $MAX / 2 ; $j += 2 * $i + 1) $marked[$j] = true; // Since 2 is a prime number array_push($primes 2); // Print other primes. Remaining primes  // are of the form 2*i + 1 such that // marked[i] is false. for ($i = 1; $i <= $MAX / 2; $i++) if ($marked[$i] == false) array_push($primes (2 * $i + 1)); } // Function to calculate primorial of n function calculatePrimorial($n) { global $primes; // Multiply first n primes  $result = 1; for ($i = 0; $i < $n; $i++) $result = $result * $primes[$i]; return $result; } // Driver code $n = 5; sieveSundaram(); for ($i = 1 ; $i<= $n; $i++) echo 'Primorial(P#) of ' . $i . ' is ' . calculatePrimorial($i) . 'n'; // This code is contributed by mits ?> 
JavaScript
<script> // Javascript program to find Primorial // of given numbers let MAX = 100000; // vector to store all prime less // than and equal to 10^6 let primes = new Array(); // Function for sieve of sundaram. // This function stores all prime // numbers less than MAX in primes function sieveSundaram() {    // In general Sieve of Sundaram  // produces primes smaller than  // (2*x + 2) for a number given  // number x. Since we want primes  // smaller than MAX we reduce MAX  // to half. This array is used to  // separate numbers of the form  // i+j+2ij from others where 1 <= i <= j  let marked = new Array(MAX / 2 + 1).fill(0);  // Main logic of Sundaram. Mark all numbers which  // do not generate prime number by doing 2*i+1  for (let i = 1; i <= (Math.sqrt(MAX) - 1) / 2 ; i++)  for (let j = (i * (i + 1)) << 1 ;  j <= MAX / 2 ; j += 2 * i + 1)  marked[j] = true;  // Since 2 is a prime number  primes.push(2);  // Print other primes. Remaining primes  // are of the form 2*i + 1 such that  // marked[i] is false.  for (let i = 1; i <= MAX / 2; i++)  if (marked[i] == false)  primes.push(2 * i + 1); } // Function to calculate primorial of n function calculatePrimorial(n) {   // Multiply first n primes  let result = 1;  for (let i = 0; i < n; i++)  result = result * primes[i];  return result; } // Driver code let n = 5; sieveSundaram(); for (let i = 1 ; i<= n; i++)  document.write('Primorial(P#) of ' + i + ' is ' +   calculatePrimorial(i) + '  
'
); // This code is contributed by gfgking </script>

الإخراج:   

تغيير إضافة عمود أوراكل
Primorial(P#) of 1 is 2 Primorial(P#) of 2 is 6 Primorial(P#) of 3 is 30 Primorial(P#) of 4 is 210 Primorial(P#) of 5 is 2310

تعقيد الوقت :-  O(N) 


 

إنشاء اختبار