logo

استخدام نظرية الباقي الصينية للجمع بين المعادلات المعيارية

نظرا للمعادلات المعيارية N: أ ؟ س1وزارة الدفاع (م1) . . أ ؟ سنوزارة الدفاع (من) أوجد x في المعادلة أ ؟ xmod(م123..*من) حيث مأناهو أولي أو قوة أولية وأأخذ القيم من 1 إلى n. يتم إعطاء الإدخال كصفيفين، الأول عبارة عن صفيف يحتوي على قيم كل xأناوالمصفوفة الثانية تحتوي على مجموعة قيم كل عدد أولي. مأناأخرج عددًا صحيحًا لقيمة x في المعادلة النهائية. 

سلسلة جافا إلى عدد صحيح

أمثلة : 

Consider the two equations A ? 2mod(3) A ? 3mod(5)   Input :   2 3 3 5   Output :    8 Consider the four equations A ? 3mod(4) A ? 4mod(7) A ? 1mod(9) (32) A ? 0mod(11)   Input :   3 4 1 0 4 7 9 11   Output :   1243

توضيح : ونحن نهدف إلى حل هذه المعادلات اثنين في وقت واحد. نأخذ المعادلتين الأوليين ونجمعهما ونستخدم تلك النتيجة للدمج مع المعادلة الثالثة وهكذا. يتم شرح عملية الجمع بين معادلتين على النحو التالي من خلال أخذ المثال 2 كمرجع:



  1. أ ؟ 3mod(4) و؟ 4mod(7) هما المعادلتان اللتان تم تزويدنا بهما في البداية. دع المعادلة الناتجة تكون بعض A؟ سوزارة الدفاع (م1* م2).
    • أيعطى بواسطة م1'* م1* س+ م'* م* س1حيث م1' = معكوس معياري لـ m1وحدة مو م' = معكوس معياري لـ mوحدة م1
    • يمكننا حساب المعكوس المعياري باستخدام خوارزمية إقليدية موسعة.
    • نجد سليكون أمود (م1* م2)
    • نحصل على معادلتنا الجديدة لتكون A؟ 11mod(28) حيث A هو 95
  2. نحاول الآن دمج هذا مع المعادلة 3 وبطريقة مماثلة نحصل على A؟ 235mod(252) حيث A = 2503
  3. وأخيرًا عند دمج هذا مع المعادلة 4 نحصل على A؟ 1243mod(2772) حيث A = 59455 وx = 1243

نلاحظ أن 2772 يساوي بحق 4 * 7 * 9 * 11. وبذلك نكون قد أوجدنا قيمة x للمعادلة النهائية. يمكنك الرجوع إلى الخوارزمية الإقليدية الموسعة و معكوس مضاعف وحدات للحصول على معلومات إضافية حول هذه المواضيع. 

C++
// C++ program to combine modular equations // using Chinese Remainder Theorem #include   using namespace std; // function that implements Extended euclidean // algorithm vector<int> extended_euclidean(int aint b){  if(a == 0){  vector<int> temp;  temp.push_back(b);  temp.push_back(0);  temp.push_back(1);   return temp;  }  else{  vector<int> temp(3);  temp= extended_euclidean(b % a a);  int g = temp[0];  int y = temp[1];  int x = temp[2];  temp[0] = g;  temp[1] = x - ((b/a) * y);  temp[2] = y;  return temp;  }  vector<int> temp;  return temp; } // modular inverse driver function int modinv(int aint m){  vector<int> temp(3);  temp = extended_euclidean(a m);  int g = temp[0];  int x = temp[1];  int y = temp[2];    // Since we are taking the modulo of   // negative numbers so to have positive   // output of the modulo we use this formula.   int ans = x - (floor(x/(float)m) * m);  return ans; }   // function implementing Chinese remainder theorem // list m contains all the modulii // list x contains the remainders of the equations int crt(vector<int> &mvector<int> & x) {    // We run this loop while the list of  // remainders has length greater than 1  while(1)  {    // temp1 will contain the new value   // of A. which is calculated according   // to the equation m1' * m1 * x0 + m0'  // * m0 * x1  int var1 = (modinv(m[1]m[0]));  int var2 = (modinv(m[0]m[1]) );  // cout << var1 << ' ' << var2 << endl;  int temp1 = (modinv(m[1]m[0])) * x[0] * m[1] + (modinv(m[0]m[1]) )* x[1] * m[0];  // temp2 contains the value of the modulus  // in the new equation which will be the   // product of the modulii of the two  // equations that we are combining  int temp2 = m[0] * m[1];  // cout << temp1<< ' '<  // we then remove the first two elements  // from the list of remainders and replace  // it with the remainder value which will  // be temp1 % temp2  x.erase(x.begin());  x.erase(x.begin());  x.insert(x.begin() temp1%temp2);  //we then remove the first two values from  //the list of modulii as we no longer require  // them and simply replace them with the new   // modulii that we calculated  m.erase(m.begin());  m.erase(m.begin());  m.insert(m.begin() temp2);  // once the list has only one element left  // we can break as it will only contain   // the value of our final remainder  if(x.size()== 1){  break;  }  }    // returns the remainder of the final equation  return x[0]; } // driver segment int main(){  vector<int> m = {4 7 9 11};  vector<int> x = {3 4 1 0};  cout << crt(m x) << endl;  return 0; } // The code is contributed by Gautam goel (gautamgoe962) 
Java
// Java program to implement the Chinese Remainder Theorem import java.util.ArrayList; import java.math.BigInteger; public class ChineseRemainderTheorem {  // Function to calculate the modular inverse of a and m  public static BigInteger modinv(BigInteger a BigInteger m) {  BigInteger m0 = m;  BigInteger y = BigInteger.ZERO;  BigInteger x = BigInteger.ONE;  if (m.equals(BigInteger.ONE))  return BigInteger.ZERO;  while (a.compareTo(BigInteger.ONE) == 1) {  BigInteger q = a.divide(m);  BigInteger t = m;  m = a.mod(m);  a = t;  t = y;  y = x.subtract(q.multiply(y));  x = t;  }  if (x.compareTo(BigInteger.ZERO) == -1)  x = x.add(m0);  return x;  }  // Function to implement the Chinese Remainder Theorem  public static BigInteger crt(ArrayList<BigInteger> m ArrayList<BigInteger> x) {  BigInteger M = BigInteger.ONE;  for (int i = 0; i < m.size(); i++) {  M = M.multiply(m.get(i));  }  BigInteger result = BigInteger.ZERO;  for (int i = 0; i < m.size(); i++) {  BigInteger Mi = M.divide(m.get(i));  BigInteger MiInv = modinv(Mi m.get(i));  result = result.add(x.get(i).multiply(Mi).multiply(MiInv));  }  return result.mod(M);  }  public static void main(String[] args) {  ArrayList<BigInteger> m = new ArrayList<>();  ArrayList<BigInteger> x = new ArrayList<>();  m.add(BigInteger.valueOf(4));  m.add(BigInteger.valueOf(7));  m.add(BigInteger.valueOf(9));  m.add(BigInteger.valueOf(11));  x.add(BigInteger.valueOf(3));  x.add(BigInteger.valueOf(4));  x.add(BigInteger.valueOf(1));  x.add(BigInteger.valueOf(0));  System.out.println(crt(m x));  } } // This code is contributed by Vikram_Shirsat 
Python
# Python 2.x program to combine modular equations # using Chinese Remainder Theorem # function that implements Extended euclidean # algorithm def extended_euclidean(a b): if a == 0: return (b 0 1) else: g y x = extended_euclidean(b % a a) return (g x - (b // a) * y y) # modular inverse driver function def modinv(a m): g x y = extended_euclidean(a m) return x % m # function implementing Chinese remainder theorem # list m contains all the modulii # list x contains the remainders of the equations def crt(m x): # We run this loop while the list of # remainders has length greater than 1 while True: # temp1 will contain the new value  # of A. which is calculated according  # to the equation m1' * m1 * x0 + m0' # * m0 * x1 temp1 = modinv(m[1]m[0]) * x[0] * m[1] +  modinv(m[0]m[1]) * x[1] * m[0] # temp2 contains the value of the modulus # in the new equation which will be the  # product of the modulii of the two # equations that we are combining temp2 = m[0] * m[1] # we then remove the first two elements # from the list of remainders and replace # it with the remainder value which will # be temp1 % temp2 x.remove(x[0]) x.remove(x[0]) x = [temp1 % temp2] + x # we then remove the first two values from # the list of modulii as we no longer require # them and simply replace them with the new  # modulii that we calculated m.remove(m[0]) m.remove(m[0]) m = [temp2] + m # once the list has only one element left # we can break as it will only contain  # the value of our final remainder if len(x) == 1: break # returns the remainder of the final equation return x[0] # driver segment m = [4 7 9 11] x = [3 4 1 0] print crt(m x) 
C#
using System; using System.Collections; using System.Collections.Generic; using System.Linq; // C# program to combine modular equations // using Chinese Remainder Theorem class HelloWorld {  // function that implements Extended euclidean  // algorithm  public static List<int> extended_euclidean(int aint b){  if(a == 0){  List<int> temp = new List<int>();  temp.Add(b);  temp.Add(0);  temp.Add(1);   return temp;  }  else{  List<int> temp = new List<int>();  temp.Add(0);  temp.Add(0);  temp.Add(0);  temp= extended_euclidean(b % a a);  int g = temp[0];  int y = temp[1];  int x = temp[2];  temp[0] = g;  temp[1] = x - ((b/a) * y);  temp[2] = y;  return temp;  }  List<int> temp1 = new List<int>();  return temp1;  }  // modular inverse driver function  public static double modinv(int aint m){  List<int> temp = new List<int>();  temp.Add(0);  temp.Add(0);  temp.Add(0);  temp = extended_euclidean(a m);  int g = temp[0];  int x = temp[1];  int y = temp[2];  // Since we are taking the modulo of   // negative numbers so to have positive   // output of the modulo we use this formula.   double val = Math.Floor(((double)x/(double)m));  double ans = x - (val * m);  return ans;  }  // function implementing Chinese remainder theorem  // list m contains all the modulii  // list x contains the remainders of the equations  public static int crt(List<int> mList<int> x)  {  // We run this loop while the list of  // remainders has length greater than 1  while(true)  {  // temp1 will contain the new value   // of A. which is calculated according   // to the equation m1' * m1 * x0 + m0'  // * m0 * x1  double var1 = (modinv(m[1]m[0]));  double var2 = (modinv(m[0]m[1]));  // cout << var1 << ' ' << var2 << endl;  double temp1 = (modinv(m[1]m[0])) * x[0] * m[1] + (modinv(m[0]m[1]) )* x[1] * m[0];  // temp2 contains the value of the modulus  // in the new equation which will be the   // product of the modulii of the two  // equations that we are combining  int temp2 = m[0] * m[1];  // cout << temp1<< ' '<  // we then remove the first two elements  // from the list of remainders and replace  // it with the remainder value which will  // be temp1 % temp2  x.RemoveAt(0);  x.RemoveAt(0);  x.Insert(0 (int)temp1%(int)temp2);  //we then remove the first two values from  //the list of modulii as we no longer require  // them and simply replace them with the new   // modulii that we calculated  m.RemoveAt(0);  m.RemoveAt(0);  m.Insert(0 temp2);  // once the list has only one element left  // we can break as it will only contain   // the value of our final remainder  if(x.Count == 1){  break;  }  }  // returns the remainder of the final equation  return x[0];  }  static void Main() {  List<int> m = new List<int>(){  4 7 9 11  };  List<int> x = new List<int> (){  3 4 1 0  };  Console.WriteLine(crt(m x));  } } // The code is contributed by Nidhi goel.  
JavaScript
// JavaScript program to combine modular equations // using Chinese Remainder Theorem // function that implements Extended euclidean // algorithm function extended_euclidean(a b){  if(a == 0){  let temp = [b 0 1];  return temp;  }  else{  let temp= extended_euclidean(b % a a);  let g = temp[0];  let y = temp[1];  let x = temp[2];  temp[0] = g;  temp[1] = x - (Math.floor(b/a) * y);  temp[2] = y;  return temp;  }  let temp;  return temp; } // modular inverse driver function function modinv(a m){  let temp = extended_euclidean(a m);  let g = temp[0];  let x = temp[1];  let y = temp[2];    // Since we are taking the modulo of   // negative numbers so to have positive   // output of the modulo we use this formula.   let ans = x - (Math.floor(x/m) * m);  return ans; }   // function implementing Chinese remainder theorem // list m contains all the modulii // list x contains the remainders of the equations function crt(m x) {    // We run this loop while the list of  // remainders has length greater than 1  while(1)  {    // temp1 will contain the new value   // of A. which is calculated according   // to the equation m1' * m1 * x0 + m0'  // * m0 * x1  let var1 = (modinv(m[1]m[0]));  let var2 = (modinv(m[0]m[1]) );  // cout << var1 << ' ' << var2 << endl;  let temp1 = (modinv(m[1]m[0])) * x[0] * m[1] + (modinv(m[0]m[1]) )* x[1] * m[0];  // temp2 contains the value of the modulus  // in the new equation which will be the   // product of the modulii of the two  // equations that we are combining  let temp2 = m[0] * m[1];  // cout << temp1<< ' '<  // we then remove the first two elements  // from the list of remainders and replace  // it with the remainder value which will  // be temp1 % temp2  x.shift();  x.shift();  x.unshift(temp1 % temp2);  //we then remove the first two values from  //the list of modulii as we no longer require  // them and simply replace them with the new   // modulii that we calculated  m.shift();  m.shift();  m.unshift(temp2);  // once the list has only one element left  // we can break as it will only contain   // the value of our final remainder  if(x.length== 1){  break;  }  }    // returns the remainder of the final equation  return x[0]; } // driver segment let m = [4 7 9 11]; let x = [3 4 1 0]; console.log(crt(m x)); // The code is contributed by phasing17 

الإخراج:

1243

تعقيد الوقت : O(l) حيث l هو حجم قائمة الباقي.

تعقيد الفضاء : O(1) لأننا لا نستخدم أي مساحة إضافية.

هذه النظرية والخوارزمية لها تطبيقات ممتازة. أحد التطبيقات المفيدة جدًا هو الحسابنجص% m حيث m ليس رقمًا أوليًا و نظرية لوكاس لا يمكن تطبيقها مباشرة. في مثل هذه الحالة يمكننا حساب العوامل الأولية لـ m واستخدام العوامل الأولية واحدًا تلو الآخر كمعامل في معاملنانجصمعادلة % m والتي يمكننا حسابها باستخدام نظرية لوكاس ثم دمج المعادلات الناتجة معًا باستخدام نظرية الباقي الصينية الموضحة أعلاه.

إنشاء اختبار