#practiceLinkDiv { العرض: لا شيء! مهم؛ }هناك دائرتان A وB مع مركزيهما C1(x1y1) و C2(x2y2) ونصف القطر ر1 و R2 . المهمة هي التحقق من أن الدائرتين A و B تلمسان بعضهما البعض أم لا.
أمثلة :
الممارسة الموصى بها: تحقق مما إذا كانت دائرتان معينتان تلمسان بعضهما البعض، جربها!مدخل : ج1 = (4 3)
ج2 = (14 18)
ر1 = 5 ر2 = 8
الإخراج : الدوائر لا تلمس بعضها البعض.
مدخل : ج1 = (2 3)
ج2 = (15 28)
ر1 = 12 ر2 = 10
الإخراج : الدوائر تتقاطع مع بعضها البعض.مدخل : C1 = (-10 8)
ج2 = (14 -24)
ر1 = 30 ر2 = 10
يقترب:
يتم حساب المسافة بين المراكز C1 و C2 على النحو التالي
C1C2 = sqrt((x1 - x2) 2+ (ص1 - ص2) 2 ).
هناك ثلاثة شروط تنشأ.
- لو C1C2<= R1 - R2: الدائرة B تقع داخل A.
- لو C1C2<= R2 - R1: الدائرة A تقع داخل B.
- لو C1C2< R1 + R2: الدائرة تتقاطع مع بعضها البعض.
- لو C1C2 == R1 + R2: الدائرة A و B على اتصال مع بعضهما البعض.
- خلاف ذلك الدائرة A و B لا تتداخل
وفيما يلي تنفيذ النهج المذكور أعلاه:
C++// C++ program to check if two // circles touch each other or not. #include using namespace std; int circle(int x1 int y1 int x2 int y2 int r1 int r2) { double d = sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2)); if (d <= r1 - r2) { cout << 'Circle B is inside A'; } else if (d <= r2 - r1) { cout << 'Circle A is inside B'; } else if (d < r1 + r2) { cout << 'Circle intersect to each other'; } else if (d == r1 + r2) { cout << 'Circle touch to each other'; } else { cout << 'Circle not touch to each other'; } } // Driver code int main() { int x1 = -10 y1 = 8; int x2 = 14 y2 = -24; int r1 = 30 r2 = 10; circle(x1 y1 x2 y2 r1 r2); return 0; }
Java // Java program to check if two // circles touch each other or not. import java.io.*; class GFG { static void circle(int x1 int y1 int x2 int y2 int r1 int r2) { double d = Math.sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2)); if (d <= r1 - r2) { System.out.println('Circle B is inside A'); } else if (d <= r2 - r1) { System.out.println('Circle A is inside B'); } else if (d < r1 + r2) { System.out.println('Circle intersect' + ' to each other'); } else if (d == r1 + r2) { System.out.println('Circle touch to' + ' each other'); } else { System.out.println('Circle not touch' + ' to each other'); } } // Driver code public static void main(String[] args) { int x1 = -10 y1 = 8; int x2 = 14 y2 = -24; int r1 = 30 r2 = 10; circle(x1 y1 x2 y2 r1 r2); } } // This article is contributed by vt_m.
Python # Python program to check if two # circles touch each other or not. import math # Function to check if two circles touch each other def circle(x1 y1 x2 y2 r1 r2): d = math.sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2)) if(d <= r1 - r2): print('Circle B is inside A') elif(d <= r2 - r1): print('Circle A is inside B') elif(d < r1 + r2): print('Circle intersect to each other') elif(d == r1 + r2): print('Circle touch to each other') else: print('Circle not touch to each other') # Driver code x1 y1 = -10 8 x2 y2 = 14 -24 r1 r2 = 30 10 # Function call circle(x1 y1 x2 y2 r1 r2) # This code is contributed by Aman Kumar
C# // C# program to check if two // circles touch each other or not. using System; class GFG { static void circle(int x1 int y1 int x2 int y2 int r1 int r2) { double d = Math.Sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2)); if (d <= r1 - r2) { Console.Write('Circle B is inside A'); } else if (d <= r2 - r1) { Console.Write('Circle A is inside B'); } else if (d < r1 + r2) { Console.Write('Circle intersect' + ' to each other'); } else if (d == r1 + r2) { Console.Write('Circle touch to' + ' each other'); } else { Console.Write('Circle not touch' + ' to each other'); } } // Driver code public static void Main(String[] args) { int x1 = -10 y1 = 8; int x2 = 14 y2 = -24; int r1 = 30 r2 = 10; circle(x1 y1 x2 y2 r1 r2); } } // This article is contributed by Pushpesh Raj.
JavaScript // JavaScript program to check if two circles touch each other or not. function circle(x1 y1 x2 y2 r1 r2) { var d = Math.sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2)); if (d <= r1 - r2) { console.log('Circle B is inside A'); } else if (d <= r2 - r1) { console.log('Circle A is inside B'); } else if (d < r1 + r2) { console.log('Circle intersect to each other'); } else if (d === r1 + r2) { console.log('Circle touch to each other'); } else { console.log('Circle not touch to each other'); } } // Driver code var x1 = -10 y1 = 8; var x2 = 14 y2 = -24; var r1 = 30 r2 = 10; circle(x1 y1 x2 y2 r1 r2); // this code is contributed by devendra
الإخراج
Circle touch to each other
تعقيد الوقت: O(log(n)) بسبب استخدام وظيفة sqrt المضمنة
المساحة المساعدة: يا(1)
هذه المقالة ساهم بها آرتي_راثي و دارمندرا كومار .