logo

جمع كل القطع النقدية في الحد الأدنى لعدد الخطوات

نظرا للعديد من أكوام العملات المعدنية التي يتم ترتيبها بشكل متجاور. نحتاج إلى جمع كل هذه العملات المعدنية في أقل عدد ممكن من الخطوات حيث يمكننا في خطوة واحدة جمع خط أفقي واحد من العملات المعدنية أو خط عمودي من العملات المعدنية ويجب أن تكون العملات المجمعة مستمرة.
أمثلة :  
 

  Input :   height[] = [2 1 2 5 1] Each value of this array corresponds to the height of stack that is we are given five stack of coins where in first stack 2 coins are there then in second stack 1 coin is there and so on.   Output :   4 We can collect all above coins in 4 steps which are shown in below diagram. Each step is shown by different color. First we have collected last horizontal line of coins after which stacks remains as [1 0 1 4 0] after that another horizontal line of coins is collected from stack 3 and 4 then a vertical line from stack 4 and at the end a horizontal line from stack 1. Total steps are 4.


 

معنى لجنة اختيار الموظفين


يمكننا حل هذه المشكلة باستخدام طريقة فرق تسد. يمكننا أن نرى أنه من المفيد دائمًا إزالة الخطوط الأفقية من الأسفل. لنفترض أننا نعمل على مكدسات من فهرس l إلى فهرس r في خطوة عودية في كل مرة سنختار الحد الأدنى للارتفاع، وإزالة تلك الخطوط الأفقية العديدة وبعد ذلك سيتم تقسيم المكدس إلى جزأين l إلى الحد الأدنى والحد الأدنى +1 حتى r وسنستدعي بشكل متكرر في تلك المصفوفات الفرعية. شيء آخر هو أنه يمكننا أيضًا جمع العملات المعدنية باستخدام الخطوط العمودية لذلك سنختار الحد الأدنى بين نتيجة المكالمات المتكررة و (r - l) لأنه باستخدام الخطوط العمودية (r - l) يمكننا دائمًا جمع كل العملات المعدنية. 
كما هو الحال في كل مرة نقوم باستدعاء كل صفيف فرعي وإيجاد الحد الأدنى من التعقيد الزمني الإجمالي للحل سيكون O(N2
 



C++
// C++ program to find minimum number of // steps to collect stack of coins #include    using namespace std; // recursive method to collect coins from // height array l to r with height h already // collected int minStepsRecur(int height[] int l int r int h) {  // if l is more than r no steps needed  if (l >= r)  return 0;  // loop over heights to get minimum height  // index  int m = l;  for (int i = l; i < r; i++)  if (height[i] < height[m])  m = i;  /* choose minimum from  1) collecting coins using all vertical  lines (total r - l)  2) collecting coins using lower horizontal  lines and recursively on left and right  segments */  return min(r - l  minStepsRecur(height l m height[m]) +   minStepsRecur(height m + 1 r height[m]) +   height[m] - h); } // method returns minimum number of step to // collect coin from stack with height in // height[] array int minSteps(int height[] int N) {  return minStepsRecur(height 0 N 0); } // Driver code to test above methods int main() {  int height[] = { 2 1 2 5 1 };  int N = sizeof(height) / sizeof(int);  cout << minSteps(height N) << endl;  return 0; } 
Java
// Java Code to Collect all coins in // minimum number of steps import java.util.*; class GFG {  // recursive method to collect coins from  // height array l to r with height h already  // collected  public static int minStepsRecur(int height[] int l  int r int h)  {  // if l is more than r no steps needed  if (l >= r)  return 0;  // loop over heights to get minimum height  // index  int m = l;  for (int i = l; i < r; i++)  if (height[i] < height[m])  m = i;  /* choose minimum from  1) collecting coins using all vertical  lines (total r - l)  2) collecting coins using lower horizontal  lines and recursively on left and right  segments */  return Math.min(r - l  minStepsRecur(height l m height[m]) +   minStepsRecur(height m + 1 r height[m]) +  height[m] - h);  }  // method returns minimum number of step to  // collect coin from stack with height in  // height[] array  public static int minSteps(int height[] int N)  {  return minStepsRecur(height 0 N 0);  }  /* Driver program to test above function */  public static void main(String[] args)  {  int height[] = { 2 1 2 5 1 };  int N = height.length;  System.out.println(minSteps(height N));  } } // This code is contributed by Arnav Kr. Mandal. 
Python 3
# Python 3 program to find  # minimum number of steps  # to collect stack of coins # recursive method to collect  # coins from height array l to  # r with height h already # collected def minStepsRecur(height l r h): # if l is more than r # no steps needed if l >= r: return 0; # loop over heights to  # get minimum height index m = l for i in range(l r): if height[i] < height[m]: m = i # choose minimum from # 1) collecting coins using  # all vertical lines (total r - l) # 2) collecting coins using  # lower horizontal lines and  # recursively on left and  # right segments  return min(r - l minStepsRecur(height l m height[m]) + minStepsRecur(height m + 1 r height[m]) + height[m] - h) # method returns minimum number # of step to collect coin from  # stack with height in height[] array def minSteps(height N): return minStepsRecur(height 0 N 0) # Driver code  height = [ 2 1 2 5 1 ] N = len(height) print(minSteps(height N)) # This code is contributed # by ChitraNayal 
C#
// C# Code to Collect all coins in // minimum number of steps using System; class GFG {  // recursive method to collect coins from  // height array l to r with height h already  // collected  public static int minStepsRecur(int[] height int l  int r int h)  {  // if l is more than r no steps needed  if (l >= r)  return 0;  // loop over heights to  // get minimum height index  int m = l;  for (int i = l; i < r; i++)  if (height[i] < height[m])  m = i;  /* choose minimum from  1) collecting coins using all vertical  lines (total r - l)  2) collecting coins using lower horizontal  lines and recursively on left and right  segments */  return Math.Min(r - l  minStepsRecur(height l m height[m]) +   minStepsRecur(height m + 1 r height[m]) +  height[m] - h);  }  // method returns minimum number of step to  // collect coin from stack with height in  // height[] array  public static int minSteps(int[] height int N)  {  return minStepsRecur(height 0 N 0);  }  /* Driver program to test above function */  public static void Main()  {  int[] height = { 2 1 2 5 1 };  int N = height.Length;  Console.Write(minSteps(height N));  } } // This code is contributed by nitin mittal 
PHP
 // PHP program to find minimum number of // steps to collect stack of coins // recursive method to collect // coins from height array l to  // r with height h already // collected function minStepsRecur($height $l $r $h) { // if l is more than r // no steps needed if ($l >= $r) return 0; // loop over heights to // get minimum height // index $m = $l; for ($i = $l; $i < $r; $i++) if ($height[$i] < $height[$m]) $m = $i; /* choose minimum from  1) collecting coins using   all vertical lines   (total r - l)  2) collecting coins using   lower horizontal lines   and recursively on left  and right segments */ return min($r - $l minStepsRecur($height $l $m $height[$m]) + minStepsRecur($height $m + 1 $r $height[$m]) + $height[$m] - $h); } // method returns minimum number of step to // collect coin from stack with height in // height[] array function minSteps($height $N) { return minStepsRecur($height 0 $N 0); } // Driver Code $height = array(2 1 2 5 1); $N = sizeof($height); echo minSteps($height $N) ; // This code is contributed by nitin mittal. ?> 
JavaScript
<script> // Javascript Code to Collect all coins in // minimum number of steps    // recursive method to collect coins from  // height array l to r with height h already  // collected  function minStepsRecur(heightlrh)  {  // if l is more than r no steps needed  if (l >= r)  return 0;    // loop over heights to get minimum height  // index  let m = l;  for (let i = l; i < r; i++)  if (height[i] < height[m])  m = i;    /* choose minimum from  1) collecting coins using all vertical  lines (total r - l)  2) collecting coins using lower horizontal  lines and recursively on left and right  segments */  return Math.min(r - l  minStepsRecur(height l m height[m]) +   minStepsRecur(height m + 1 r height[m]) +  height[m] - h);  }    // method returns minimum number of step to  // collect coin from stack with height in  // height[] array  function minSteps(heightN)  {  return minStepsRecur(height 0 N 0);  }    /* Driver program to test above function */  let height=[2 1 2 5 1 ];  let N = height.length;  document.write(minSteps(height N));    // This code is contributed by avanitrachhadiya2155 </script> 

الإخراج:  
 

4

تعقيد الوقت: التعقيد الزمني لهذه الخوارزمية هو O(N^2) حيث N هو عدد العناصر في مصفوفة الارتفاع.

تعقيد الفضاء: التعقيد المكاني لهذه الخوارزمية هو O(N) بسبب الاستدعاءات العودية التي يتم إجراؤها على مصفوفة الارتفاع.


 

إنشاء اختبار