إذا كانت هناك بعض النقاط على المستوى المتميزة ولا تقع ثلاث منها على نفس الخط. نحن بحاجة إلى إيجاد عدد متوازيات الأضلاع التي تكون رؤوسها نقاطًا معينة. أمثلة:
Input : points[] = {(0 0) (0 2) (2 2) (4 2) (1 4) (3 4)} Output : 2 Two Parallelograms are possible by choosing above given point as vertices which are shown in below diagram. يمكننا حل هذه المشكلة باستخدام خاصية خاصة لمتوازيات الأضلاع، وهي أن أقطار متوازي الأضلاع تتقاطع مع بعضها البعض في المنتصف. لذا، إذا حصلنا على هذه النقطة الوسطى وهي النقطة الوسطى لأكثر من قطعة مستقيمة، فيمكننا أن نستنتج أن متوازي الأضلاع موجود بشكل أكثر دقة إذا حدثت النقطة الوسطى x مرات، فيمكن اختيار أقطار متوازيات الأضلاع المحتملة فيسج2أي أنه سيكون هناك x*(x-1)/2 متوازي أضلاع يتوافق مع هذه النقطة الوسطى المحددة بتردد x. لذلك نقوم بالتكرار على كل زوج من النقاط ونحسب النقطة الوسطى الخاصة بهم ونزيد تردد النقطة الوسطى بمقدار 1. وفي النهاية نحسب عدد متوازيات الأضلاع وفقًا لتكرار كل نقطة وسطى مميزة كما هو موضح أعلاه. نظرًا لأننا نحتاج فقط إلى تجاهل تكرار تقسيم النقطة الوسطى على 2 أثناء حساب النقطة الوسطى من أجل البساطة.
CPP// C++ program to get number of Parallelograms we // can make by given points of the plane #include using namespace std; // Returns count of Parallelograms possible // from given points int countOfParallelograms(int x[] int y[] int N) { // Map to store frequency of mid points map<pair<int int> int> cnt; for (int i=0; i<N; i++) { for (int j=i+1; j<N; j++) { // division by 2 is ignored to get // rid of doubles int midX = x[i] + x[j]; int midY = y[i] + y[j]; // increase the frequency of mid point cnt[make_pair(midX midY)]++; } } // Iterating through all mid points int res = 0; for (auto it = cnt.begin(); it != cnt.end(); it++) { int freq = it->second; // Increase the count of Parallelograms by // applying function on frequency of mid point res += freq*(freq - 1)/2; } return res; } // Driver code to test above methods int main() { int x[] = {0 0 2 4 1 3}; int y[] = {0 2 2 2 4 4}; int N = sizeof(x) / sizeof(int); cout << countOfParallelograms(x y N) << endl; return 0; }
Java /*package whatever //do not write package name here */ import java.io.*; import java.util.*; public class GFG { // Returns count of Parallelograms possible // from given points public static int countOfParallelograms(int[] x int[] y int N) { // Map to store frequency of mid points HashMap<String Integer> cnt = new HashMap<>(); for (int i=0; i<N; i++) { for (int j=i+1; j<N; j++) { // division by 2 is ignored to get // rid of doubles int midX = x[i] + x[j]; int midY = y[i] + y[j]; // increase the frequency of mid point String temp = String.join(' ' String.valueOf(midX) String.valueOf(midY)); if(cnt.containsKey(temp)){ cnt.put(temp cnt.get(temp) + 1); } else{ cnt.put(temp 1); } } } // Iterating through all mid points int res = 0; for (Map.Entry<String Integer> it : cnt.entrySet()) { int freq = it.getValue(); // Increase the count of Parallelograms by // applying function on frequency of mid point res = res + freq*(freq - 1)/2; } return res; } public static void main(String[] args) { int[] x = {0 0 2 4 1 3}; int[] y = {0 2 2 2 4 4}; int N = x.length; System.out.println(countOfParallelograms(x y N)); } } // The code is contributed by Nidhi goel.
Python3 # python program to get number of Parallelograms we # can make by given points of the plane # Returns count of Parallelograms possible # from given points def countOfParallelograms(x y N): # Map to store frequency of mid points cnt = {} for i in range(N): for j in range(i+1 N): # division by 2 is ignored to get # rid of doubles midX = x[i] + x[j]; midY = y[i] + y[j]; # increase the frequency of mid point if ((midX midY) in cnt): cnt[(midX midY)] += 1 else: cnt[(midX midY)] = 1 # Iterating through all mid points res = 0 for key in cnt: freq = cnt[key] # Increase the count of Parallelograms by # applying function on frequency of mid point res += freq*(freq - 1)/2 return res # Driver code to test above methods x = [0 0 2 4 1 3] y = [0 2 2 2 4 4] N = len(x); print(int(countOfParallelograms(x y N))) # The code is contributed by Gautam goel.
C# using System; using System.Collections.Generic; public class GFG { // Returns count of Parallelograms possible // from given points public static int CountOfParallelograms(int[] x int[] y int N) { // Map to store frequency of mid points Dictionary<string int> cnt = new Dictionary<string int>(); for (int i = 0; i < N; i++) { for (int j = i + 1; j < N; j++) { // division by 2 is ignored to get // rid of doubles int midX = x[i] + x[j]; int midY = y[i] + y[j]; // increase the frequency of mid point string temp = string.Join(' ' midX.ToString() midY.ToString()); if (cnt.ContainsKey(temp)) { cnt[temp]++; } else { cnt.Add(temp 1); } } } // Iterating through all mid points int res = 0; foreach (KeyValuePair<string int> it in cnt) { int freq = it.Value; // Increase the count of Parallelograms by // applying function on frequency of mid point res += freq * (freq - 1) / 2; } return res; } public static void Main(string[] args) { int[] x = { 0 0 2 4 1 3 }; int[] y = { 0 2 2 2 4 4 }; int N = x.Length; Console.WriteLine(CountOfParallelograms(x y N)); } }
JavaScript // JavaScript program to get number of Parallelograms we // can make by given points of the plane // Returns count of Parallelograms possible // from given points function countOfParallelograms(x y N) { // Map to store frequency of mid points // map int> cnt; let cnt = new Map(); for (let i=0; i<N; i++) { for (let j=i+1; j<N; j++) { // division by 2 is ignored to get // rid of doubles let midX = x[i] + x[j]; let midY = y[i] + y[j]; // increase the frequency of mid point let make_pair = [midX midY]; if(cnt.has(make_pair.join(''))){ cnt.set(make_pair.join('') cnt.get(make_pair.join('')) + 1); } else{ cnt.set(make_pair.join('') 1); } } } // Iterating through all mid points let res = 0; for (const [key value] of cnt) { let freq = value; // Increase the count of Parallelograms by // applying function on frequency of mid point res = res + Math.floor(freq*(freq - 1)/2); } return res; } // Driver code to test above methods let x = [0 0 2 4 1 3]; let y = [0 2 2 2 4 4]; let N = x.length; console.log(countOfParallelograms(x y N)); // The code is contributed by Gautam goel (gautamgoel962)
الإخراج
2
تعقيد الوقت: على2logn) حيث أننا نقوم بالتكرار من خلال حلقتين تصل إلى n ونستخدم الخريطة أيضًا والتي تأخذ تسجيل الدخول.
المساحة المساعدة: على)
إنشاء اختبار