logo

اطبع جميع المصفوفات الفرعية بمجموع 0

جربه على ممارسة GfG ' title=

نظرا لمجموعة وصول[] من الحجم ن المهمة هي طباعة جميع المصفوفات الفرعية في المصفوفة التي تحتوي على مجموع .

أمثلة:  



مدخل: آر = [6 3 -1 -3 4 -2 2 4 6 -12 -7]
الإخراج:

تم العثور على صفيف فرعي من الفهرس 2 إلى 4
تم العثور على صفيف فرعي من الفهرس 2 إلى 6
تم العثور على صفيف فرعي من الفهرس 5 إلى 6
تم العثور على صفيف فرعي من الفهرس 6 إلى 9
تم العثور على صفيف فرعي من الفهرس من 0 إلى 10

مدخل: آر = [1 2 -3 3 -1 -1]
الإخراج:



تم العثور على صفيف فرعي من الفهرس 0 إلى 2
تم العثور على صفيف فرعي من الفهرس 2 إلى 3
تم العثور على صفيف فرعي من الفهرس 3 إلى 5

[نهج ساذج] من خلال إنشاء جميع المصفوفات الفرعية الممكنة - O(n2) الوقت وO(1) المساحة المساعدة

النهج الأساسي للغاية هو النظر جميع المصفوفات الفرعية الممكنة ويتحقق مما إذا كان مجموعهم صفرًا. على الرغم من أن هذا الأسلوب بسيط ولكنه غير فعال أيضًا بالنسبة للمصفوفات الكبيرة.

C++
// C++ program to print all subarrays // in the array which has sum 0 #include    using namespace std; vector<pair<int int> > findSubArrays(int arr[] int n) {  // Array to store all the start and end  // indices of subarrays with 0 sum  vector<pair<int int> > output;  for (int i = 0; i < n; i++) {  int prefix = 0;  for (int j = i; j < n; j++) {  prefix += arr[j];  if (prefix == 0)  output.push_back({ i j });  }  }  return output; } // Function to print all subarrays with 0 sum void print(vector<pair<int int> > output) {  for (auto it = output.begin(); it != output.end(); it++)  cout << 'Subarray found from Index ' << it->first  << ' to ' << it->second << endl; } // Driver code int main() {  // Given array  int arr[] = { 6 3 -1 -3 4 -2 2 4 6 -12 -7 };  int n = sizeof(arr) / sizeof(arr[0]);  // Function Call  vector<pair<int int> > output = findSubArrays(arr n);  // if we didn’t find any subarray with 0 sum  // then subarray doesn’t exists  if (output.size() == 0) {  cout << 'No subarray exists';  }  else {  print(output);  }  return 0; } 
Java
// Java program to print all subarrays // in the array which has sum 0 import java.io.*; import java.util.*; // User defined pair class class Pair {  int first second;  Pair(int a int b)  {  first = a;  second = b;  } } public class GFG {  static ArrayList<Pair> findSubArrays(int[] arr int n)  {  // Array to store all the start and end  // indices of subarrays with 0 sum  ArrayList<Pair> out = new ArrayList<>();  for (int i = 0; i < n; i++) {  int prefix = 0;  for (int j = i; j < n; j++) {  prefix += arr[j];  if (prefix == 0)  out.add(new Pair(i j));  }  }  return out;  }  // Function to print all subarrays with 0 sum  static void print(ArrayList<Pair> out)  {  for (int i = 0; i < out.size(); i++) {  Pair p = out.get(i);  System.out.println('Subarray found from Index '  + p.first + ' to '  + p.second);  }  }  // Driver code  public static void main(String args[])  {  // Given array  int[] arr  = { 6 3 -1 -3 4 -2 2 4 6 -12 -7 };  int n = arr.length;  // Function Call  ArrayList<Pair> out = findSubArrays(arr n);  // if we didn’t find any subarray with 0 sum  // then subarray doesn’t exists  if (out.size() == 0)  System.out.println('No subarray exists');  else  print(out);  } } 
Python
# User defined pair class class Pair: first = 0 second = 0 def __init__(self a b): self.first = a self.second = b class GFG: @staticmethod def findSubArrays(arr n): # Array to store all the start and end # indices of subarrays with 0 sum out = [] i = 0 while (i < n): prefix = 0 j = i while (j < n): prefix += arr[j] if (prefix == 0): out.append(Pair(i j)) j += 1 i += 1 return out # Function to print all subarrays with 0 sum @staticmethod def print(out): i = 0 while (i < len(out)): p = out[i] print('Subarray found from Index ' + str(p.first) + ' to ' + str(p.second)) i += 1 # Driver code @staticmethod def main(args): # Given array arr = [6 3 -1 -3 4 -2 2 4 6 -12 -7] n = len(arr) # Function Call out = GFG.findSubArrays(arr n) # if we didn't find any subarray with 0 sum # then subarray doesn't exists if (len(out) == 0): print('No subarray exists') else: GFG.print(out) if __name__ == '__main__': GFG.main([]) 
C#
using System; using System.Collections.Generic; class GFG {    // Array to store all the start and end  // indices of subarrays with 0 sum  static List<Tuple<int int>> findSubArrays(int[] arr int n)  {  var output = new List<Tuple<int int>>();  for (int i = 0; i < n; i++)  {  int prefix = 0;  for (int j = i; j < n; j++)  {  prefix += arr[j];  if (prefix == 0)  output.Add(Tuple.Create(i j));  }  }  return output;  }  // Function to print all subarrays with 0 sum  static void print(List<Tuple<int int>> output)  {  foreach (var subArray in output)  Console.Write('Subarray found from Index ' + subArray.Item1 + ' to ' + subArray.Item2+'n');  }  // Driver code  public static void Main()  {  // Given array  int[] arr = { 6 3 -1 -3 4 -2 2 4 6 -12 -7 };  int n = arr.Length;  // Function Call  List<Tuple<int int>> output = findSubArrays(arr n);  // if we didn’t find any subarray with 0 sum  // then subarray doesn’t exists  if (output.Count == 0)  {  Console.WriteLine('No subarray exists');  }  else  {  print(output);  }  } } 
JavaScript
// Javascript program to print all subarrays // in the array which has sum 0 function findSubArrays(arr n) {  // Array to store all the start and end  // indices of subarrays with 0 sum  let out =[];  for (let i = 0; i < n; i++) {  let prefix = 0;  for (let j = i; j < n; j++) {  prefix += arr[j];  if (prefix == 0)  out.push([i j]);  }  }  return out; } // Function to print all subarrays with 0 sum function print(out) {  for (let it of out)  console.log('Subarray found from Index ' + it[0]  + ' to ' + it[1]); } // Driver code // Given array let arr = [ 6 3 -1 -3 4 -2 2 4 6 -12 -7 ]; let n = arr.length ; // Function Call let out = findSubArrays(arr n); // if we didn’t find any subarray with 0 sum // then subarray doesn’t exists if (out.length == 0) {  console.log('No subarray exists'); } else {  print(out); }   

الإخراج
Subarray found from Index 0 to 10 Subarray found from Index 2 to 4 Subarray found from Index 2 to 6 Subarray found from Index 5 to 6 Subarray found from Index 6 to 9 

تعقيد الوقت: على2) لأننا نستخدم حلقتين.
المساحة المساعدة: O(1) حيث أن هناك حاجة إلى مساحة إضافية ثابتة.



[النهج المتوقع] باستخدام التجزئة - الوقت O(n) والمساحة المساعدة O(n).

الطريقة الأكثر فعالية هي استخدام التجزئة لتخزين المجموع التراكمي للعناصر ومؤشراتها. يسمح هذا بالتحقق من وجود صفيف فرعي بمجموع صفر في وقت ثابت.

فيما يلي خطوات تفصيلية للحدس:

  1. قم بإنشاء خريطة تجزئة لتخزين المجموع التراكمي والمؤشرات المقابلة.
  2. تهيئة المبلغ التراكمي إلى الصفر.
  3. اجتياز المصفوفة:
    • أضف العنصر الحالي إلى المجموع التراكمي.
    • إذا كان المجموع التراكمي صفرًا، فسيتم العثور على مصفوفة فرعية من البداية إلى الفهرس الحالي.
    • إذا كان المجموع التراكمي موجودًا بالفعل في خريطة التجزئة، فهذا يعني وجود مصفوفة فرعية بمجموع صفر.
    • قم بتخزين المجموع التراكمي والفهرس في خريطة التجزئة.
C++
// C++ program to print all subarrays // in the array which has sum 0 #include    using namespace std; // Function to print all subarrays in the array which // has sum 0 vector<pair<int int> > findSubArrays(int arr[] int n) {  // create an empty map  unordered_map<int vector<int> > map;  // create an empty vector of pairs to store  // subarray starting and ending index  vector<pair<int int> > out;  // Maintains sum of elements so far  int sum = 0;  for (int i = 0; i < n; i++) {  // add current element to sum  sum += arr[i];  // if sum is 0 we found a subarray starting  // from index 0 and ending at index i  if (sum == 0)  out.push_back(make_pair(0 i));  // If sum already exists in the map there exists  // at-least one subarray ending at index i with  // 0 sum  if (map.find(sum) != map.end()) {  // map[sum] stores starting index of all  // subarrays  vector<int> vc = map[sum];  for (auto it = vc.begin(); it != vc.end(); it++)  out.push_back(make_pair(*it + 1 i));  }  // Important - no else  map[sum].push_back(i);  }  // return output vector  return out; } // Utility function to print all subarrays with sum 0 void print(vector<pair<int int> > out) {  for (auto it = out.begin(); it != out.end(); it++)  cout << 'Subarray found from Index ' << it->first  << ' to ' << it->second << endl; } // Driver code int main() {  int arr[] = { 6 3 -1 -3 4 -2 2 4 6 -12 -7 };  int n = sizeof(arr) / sizeof(arr[0]);  vector<pair<int int> > out = findSubArrays(arr n);  // if we didn’t find any subarray with 0 sum  // then subarray doesn’t exists  if (out.size() == 0)  cout << 'No subarray exists';  else  print(out);  return 0; } 
Java
// Java program to print all subarrays // in the array which has sum 0 import java.io.*; import java.util.*; // User defined pair class class Pair {  int first second;  Pair(int a int b)  {  first = a;  second = b;  } } public class GFG {  // Function to print all subarrays in the array which  // has sum 0  static ArrayList<Pair> findSubArrays(int[] arr int n)  {  // create an empty map  HashMap<Integer ArrayList<Integer> > map  = new HashMap<>();  // create an empty vector of pairs to store  // subarray starting and ending index  ArrayList<Pair> out = new ArrayList<>();  // Maintains sum of elements so far  int sum = 0;  for (int i = 0; i < n; i++) {  // add current element to sum  sum += arr[i];  // if sum is 0 we found a subarray starting  // from index 0 and ending at index i  if (sum == 0)  out.add(new Pair(0 i));  ArrayList<Integer> al = new ArrayList<>();  // If sum already exists in the map there exists  // at-least one subarray ending at index i with  // 0 sum  if (map.containsKey(sum)) {  // map[sum] stores starting index of all  // subarrays  al = map.get(sum);  for (int it = 0; it < al.size(); it++) {  out.add(new Pair(al.get(it) + 1 i));  }  }  al.add(i);  map.put(sum al);  }  return out;  }  // Utility function to print all subarrays with sum 0  static void print(ArrayList<Pair> out)  {  for (int i = 0; i < out.size(); i++) {  Pair p = out.get(i);  System.out.println('Subarray found from Index '  + p.first + ' to '  + p.second);  }  }  // Driver code  public static void main(String args[])  {  int[] arr  = { 6 3 -1 -3 4 -2 2 4 6 -12 -7 };  int n = arr.length;  ArrayList<Pair> out = findSubArrays(arr n);  // if we did not find any subarray with 0 sum  // then subarray does not exists  if (out.size() == 0)  System.out.println('No subarray exists');  else  print(out);  } } 
Python
# Python3 program to print all subarrays # in the array which has sum 0 # Function to get all subarrays # in the array which has sum 0 def findSubArrays(arr n): # create a python dict hashMap = {} # create a python list # equivalent to ArrayList out = [] # tracker for sum of elements sum1 = 0 for i in range(n): # increment sum by element of array sum1 += arr[i] # if sum is 0 we found a subarray starting # from index 0 and ending at index i if sum1 == 0: out.append((0 i)) al = [] # If sum already exists in the map # there exists at-least one subarray # ending at index i with 0 sum if sum1 in hashMap: # map[sum] stores starting index # of all subarrays al = hashMap.get(sum1) for it in range(len(al)): out.append((al[it] + 1 i)) al.append(i) hashMap[sum1] = al return out # Utility function to print # all subarrays with sum 0 def printOutput(output): for i in output: print('Subarray found from Index ' + str(i[0]) + ' to ' + str(i[1])) # Driver Code if __name__ == '__main__': arr = [6 3 -1 -3 4 -2 2 4 6 -12 -7] n = len(arr) out = findSubArrays(arr n) # if we did not find any subarray with 0 sum # then subarray does not exists if (len(out) == 0): print('No subarray exists') else: printOutput(out) 
C#
// C# program to print all subarrays // in the array which has sum 0 using System; using System.Collections.Generic; // User defined pair class class Pair {  public int first second;  public Pair(int a int b)  {  first = a;  second = b;  } } class GFG {  // Function to print all subarrays  // in the array which has sum 0  static List<Pair> findSubArrays(int[] arr int n)  {  // create an empty map  Dictionary<int List<int> > map  = new Dictionary<int List<int> >();  // create an empty vector of pairs to store  // subarray starting and ending index  List<Pair> outt = new List<Pair>();  // Maintains sum of elements so far  int sum = 0;  for (int i = 0; i < n; i++) {  // add current element to sum  sum += arr[i];  // if sum is 0 we found a subarray starting  // from index 0 and ending at index i  if (sum == 0)  outt.Add(new Pair(0 i));  List<int> al = new List<int>();  // If sum already exists in the map there exists  // at-least one subarray ending at index i with  // 0 sum  if (map.ContainsKey(sum)) {  // map[sum] stores starting index  // of all subarrays  al = map[sum];  for (int it = 0; it < al.Count; it++) {  outt.Add(new Pair(al[it] + 1 i));  }  }  al.Add(i);  if (map.ContainsKey(sum))  map[sum] = al;  else  map.Add(sum al);  }  return outt;  }  // Utility function to print all subarrays with sum 0  static void print(List<Pair> outt)  {  for (int i = 0; i < outt.Count; i++) {  Pair p = outt[i];  Console.WriteLine('Subarray found from Index '  + p.first + ' to '  + p.second);  }  }  // Driver code  public static void Main(String[] args)  {  int[] arr  = { 6 3 -1 -3 4 -2 2 4 6 -12 -7 };  int n = arr.Length;  List<Pair> outt = findSubArrays(arr n);  // if we did not find any subarray with 0 sum  // then subarray does not exists  if (outt.Count == 0)  Console.WriteLine('No subarray exists');  else  print(outt);  } } 
JavaScript
// JavaScript program to print all subarrays // in the array which has sum 0 // Function to print all subarrays in the array which // has sum 0 function findSubArrays(arr n) {  // create an empty map  let map = {};    // create an empty vector of pairs to store  // subarray starting and ending index  let out = [];    // Maintains sum of elements so far  let sum = 0;    for (var i = 0; i < n; i++)  {  // add current element to sum  sum += arr[i];    // if sum is 0 we found a subarray starting  // from index 0 and ending at index i  if (sum == 0)  out.push([0 i]);    // If sum already exists in the map there exists  // at-least one subarray ending at index i with  // 0 sum  if (map.hasOwnProperty(sum))  {  // map[sum] stores starting index of all subarrays  let vc = map[sum];  for (let it of vc)  out.push([it + 1 i]);  }  else  map[sum] = [];    // Important - no else  map[sum].push(i);  }    // return output vector  return out; }   // Utility function to print all subarrays with sum 0 function print(out) {  for (let it of out)  console.log('Subarray found from Index ' + it[0] + ' to ' + it[1]); }     // Driver code let arr = [6 3 -1 -3 4 -2 2 4 6 -12 -7]; let n = arr.length;   let out = findSubArrays(arr n);   // if we didn’t find any subarray with 0 sum // then subarray doesn’t exists if (out.length == 0)  console.log('No subarray exists'); else  print(out); 

الإخراج
Subarray found from Index 2 to 4 Subarray found from Index 2 to 6 Subarray found from Index 5 to 6 Subarray found from Index 6 to 9 Subarray found from Index 0 to 10 

تعقيد الوقت: O(n) حيث n هو عدد العناصر في المصفوفة.
المساحة المساعدة: O(n) لتخزين خريطة التجزئة.

قيمة السلسلة